
Eur. Phys. J. B 45, 385–390 (2005)
DOI: 10.1140/epjb/e2005-00188-1 THE EUROPEAN

PHYSICAL JOURNAL B

Properties of weighted structured scale-free networks

Zhi-Xi Wua, Xin-Jian Xu, and Ying-Hai Wang

Institute of Theoretical Physics, Lanzhou University, Lanzhou Gansu 730000, China

Received 16 November 2004 / Received in final form 19 January 2005
Published online 6 July 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. A simple model for weighted structured scale-free (WSSF) networks is proposed. The growth
dynamics of the network is based on a naive weight-driven deactivation mechanism which couples the
establishment of new active vertices and the weights’ dynamical evolution. Simulations show that all the
interesting statistical properties of the generated network (vertices degree, vertices strength and links
weight) display good right-skewed distribution observed in many realistic systems. Particularly, if the
constant bias factor in deactivation probability is appropriately chosen, a power law distribution P (k) ∼
k−γ for vertices total degree k with the exponent γ = 3 is obtained. As a survey of the model, the epidemic
spreading process in WSSF networks is studied based on the standard susceptible-infected (SI) model.
The spreading velocity reaches a peak very quickly after the infection outbreaks which is similar to the
case of infection propagation in other heterogeneous networks; and in the long time propagation it decays
approximately with an exponential form.

PACS. 89.75.Hc Networks and genealogical trees – 87.23.Kg Dynamics of evolution – 05.70.Ln
Nonequilibrium and irreversible thermodynamics

1 Introduction

Complex networks have attracted an increasing inter-
est in the last few years [1]. The main reason is that
they play an important role in the understanding of
complex behaviors in real world networks, including the
structure of language [2,3], scientific collaboration net-
works [4,5], the Internet [6,7] and World Wide Web [8,9],
power grids [10], food webs [11,12], chemical reaction
networks [13], metabolic [14] and protein networks [15],
etc. The highly heterogeneous topology of these networks
is mainly reflected in two characters, the small average
path lengths among any two vertices (small-world prop-
erty) [16] and a power law distribution (scale-free prop-
erty), P (k) ∼ k−γ with 2 ≤ γ ≤ 3, for the probability
that any vertex has k connections to other vertices [17].
Furthermore, the aging and weight of vertices and links
are of particular interest [10,18,19]. In citation networks,
papers cease to receive links because their contents are
outdated or summarized in review papers, which are then
cited instead; and also some famous papers would likely
be cited more than those ordinary ones. The developed
metaphors considering the effect of vertices aging and
links weight to the growth of the network are the so-called
structured scale-free networks [20,21] and weighted evolv-
ing networks [10,19,22]. The introduction of vertices aging
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mechanism and links weight evolving mechanism provide
us with a profound view on understanding and character-
izing realistic systems.

In the study of complex networks, a good example is
to inspect the effect of their complex features on the dy-
namics of epidemic spreading [23]. It is easy to foresee
that the characterization and understanding of epidemic
dynamics on these networks can find immediate applica-
tions to a large number of problems, such as computer
virus infections, transmission of public opinion, etc. How-
ever, so far, most studies of epidemic spreading just focus
on unweighted networks, and a detailed inspection of epi-
demic spreading in weighted networks is very rare. In this
paper, we first proposed a simple model for weighted struc-
tured scale-free (WSSF) network based on weight-driven
deactivation mechanism which couples the establishment
of new active vertices and the weights’ dynamical evolu-
tion. It was found that all the interesting statistical prop-
erties of the generated network (vertices degree, vertices
strength and links weight) display good right-skewed dis-
tribution observed in many realistic systems. As a partic-
ular survey of the model, the standard susceptible-infected
(SI) model [24] for epidemic spreading was studied in
WSSF networks. The propagation velocity displays driv-
ing growth tendency and reaches a peak very quickly after
the infection outbreaks, which is similar to the case of in-
fection propagation in other heterogeneous networks [25].
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In the long time propagation, the velocity decays approxi-
mately with a exponential form different from the studied
power-law decay in weighted scale-free networks [26].

2 Previous weight-driven evolving models

Weighted networks can be described by a matrix wij spec-
ifying the weight on the edge connecting the vertices i
and j, with i, j = 1, ..., N where N is the size of the net-
work (wij = 0 if the vertices i and j are not connected).
Then the strength of the vertex i can be defined as [19,27]

si =
∑

j∈V(i)

wij , (1)

where the sum runs over the set V(i) of neighbors of i.
Recently, Barrat, Barthélemy and Vespignani (BBV) [28]
have proposed a model for the evolving of weighted net-
work when new edges and vertices are continuously added
into the network while causing dynamic behavior of the
weights. Their model starts from an initial number of com-
pletely connected vertices N0 with a same assigned weight
w0 to each links. At each subsequent time step, addition
of a new vertex n with m0 edges and corresponding mod-
ification in weights are implemented by the following two
rules: (i) The new vertex n is attached at random to a
previously existing vertex i according to the probability
distribution

Πn→i =
si∑
j sj

. (2)

This rule relaxes the usual degree preferential attachment,
focusing on a strength driven attachment in which new
vertices connect more likely to vertices handling larger
weights. (ii) A total induced increase δ in strength si of
the ith vertex is distributed among it’s nearest neighbors
j ∈ V(i) according to the rule

wij → wij + δ
wij

si
. (3)

More recently, Pandya [29] argued that this second
rule, though could be one possibility, does not follow the
same mechanism of the first rule. For the case of the
worldwide airport network, the first rule can be described
as “busy airports get busier” according to the dynamics
driven factor si. The second rule, however, can be instead
described by “busy routes get busier” since the route i
to j having more traffic as indicated by wij would han-
dle larger portion of the induced traffic δ given by δ

wij

si
.

That does not necessarily mean that the airport j, in the
neighbor of i, with largest value for wij is also the air-
port with maximum strength or traffic in comparison with
other neighboring airports of i. Pandya rewrite the equa-
tion (3) as

wij → wij + δ
sj∑

k∈V(i) sk
(4)

where V(i) indicates set of all neighboring airports of i
and k �= n. The last term of equation (4) indicates that

it is more probable that the induced traffic would go to-
wards the airport j handling maximum traffic sj among
the neighboring airports V(i), which is then in consistent
with the mechanism of the first rule of BBV. Moreover,
One can easily see in BBV model that limt→∞ si(t) → ∞
in the limit of long time, which is not in accordant with
most realistic condition. The deactivation mechanism of
vertices of the growing network introduced by Klemm [20]
can well avoid the case of infinite increasing of the vertices
strength.

3 Weight-driven deactivation model

Motivated by some beautiful previous work [20,28,29] and
the statements indicated in the preceding sections, we con-
struct our model to study the self-organization of WSSF
networks. The model describes the growth dynamics of
a network with directed links. Rather than the degree-
dependent deactivation dynamics of the vertices developed
in reference [20] generating structured scale-free networks
(SSF), our model is based on the weight-driven deactiva-
tion dynamics of the vertices, which can be constructed
as the following steps.

First, start from an initial seed of m0 vertices com-
pletely connected by undirected links with assigned weight
w0 = 1.0. By k′

i we denote the in-degree of vertex i, i.e.,
the number of links pointing to vertex i, and by s′i the
total induced strength by in-degree links of vertex i. Each
vertex of the network can be in two different states: ac-
tive or inactive. As the initial condition we let all the m0

vertices active. At each time step, a new vertex n is added
with m0 links that are attached to the previously exist-
ing m0 active vertices. Each new added link is assigned
weight w0 and induce a total strength increasing w0 +δ to
the linked active vertex. The additional weight δ will be
distributed among the out-degree links of the aim vertex
according to the rule

wij → wij + δ
s′j∑

k∈V(i) s′k
. (5)

For the case of the worldwide airport network, equa-
tion (5) indicates that it is more probable that larger ca-
pacity airports would handle more additional traffic which
comes from the neighbor airport i. Again, the induced
total strength of i’s neighbors can also be further redis-
tributed among the weights of the neighbors of neighbors
of airport i, and so on the neighbors of neighbors of neigh-
bors. For simplicity, we consider only the first order rear-
rangement of the strength, which means that each time
step a new vertex added into the network will increase
only the strength of it’s first and second nearest neigh-
bors. The new added vertex is always in the active state
first. It receives links from subsequently generated ver-
tices until it is deactivated. Remembering that at each
time step only m0 vertices in the network are permitted
active and all the others are inactive, we would deacti-
vate one of the m0 + 1 active vertices after the new active
vertex added to the network. To perform this, we assume
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that the probability rate P of deactivation decreases with
the total induced strength of the vertex. Then the deac-
tivation probability of a vertex i with strength s′i can be
written as

P (s′i) ∝
γ − 1
a + s′i

(6)

where a > 0 is a constant bias factor and the normal-
ization factor is defined as γ − 1 = (

∑
l∈A

1
a+s′

l
)−1. The

summation runs over the set A of the currently m0 + 1
active vertices.

Note that the larger strength a vertex possesses, the
more difficult for it to be deactivated, or in other words,
the more easier for it gaining new links. For the case of
the citation network, equation (6) means that the famous
paper cited mostly would less probability to be “forgot-
ten” [20]. Also for the case of the worldwide airport net-
work, equation (6) indicates that it is less probable that
a new airport would not build a new airline with those
airports handling more traffic. And for the case of the in-
ternet, equation (6) implies that requests are more likely
sent to those servers handling more task or possessing
better capability to ask for senior servers, which can be
reflected by the summation of the additional distributed
weight among the vertices’ out-links.

4 Structural properties

Following reference [20], the distribution N(k′) of the in-
degree k′ can be obtained analytically for the model de-
fined above, considering the continuous limit of k′. Let us
first derive the distribution p(t)(k′) of the in-degree of the
active vertices at time t. For k′ > 0, the time evolution is
determined by the following master equation

p(t+1)(k′ + 1) = (1 − P (k′))p(t)(k′), (7)

where a and γ have been defined in Section 3 of the model
definition and P (k′) is the deactivation probability of a
vertex with in-degree k′. The boundary value p(0) is a
constant reflecting the constant rate of new vertices with
initial k′ = 0. Noting that the deactivation model would
generate networks with chain like structure (implying that
the newest added vertices would barely have an influence
on the oldest vertices’ strength) and each added new link
will increase the quantity of induced strength of 1 + δ to
the linked vertex, in the large time limit, we can get an
approximate relation between s′ and k′ of the vertices,
i.e., s′ ≈ (1 + δ)k′, then we obtain P (k′) 	 P

(
s′

1+δ

)
=

(1 + δ)P (s′), where P (s′) is the deactivation probability
of a vertex with strength s′. Substituting them into equa-
tion (7), we yield

p(t+1)(k′ + 1) =

(
1 − γ − 1

a
1+δ + k′

)
p(t)(k′). (8)

Assuming that the fluctuations of the normalization
γ − 1 are small enough, such that γ may be treated as a

constant, the stationary case p(t+1)(k′) = p(t)(k′) of equa-
tion (8) yields

p(k′ + 1) − p(k′) = − γ − 1
a

1+δ + k′ p(k′). (9)

Treating k′ as continuous we write

dp

dk′ = − γ − 1
a

1+δ + k′ p(k′), (10)

and obtain the solution

p(k′) = b

(
a

1 + δ
+ k′

)−γ+1

, (11)

with appropriate normalization constant b. In case the
total number n of vertices in the network is large com-
pared with the number m0 of active vertices, the over-
all in-degree distribution N(k′) can be approximated by
considering the inactive vertices only. Thus N(k′) can be
calculated as the rate of change of the degree distribu-
tion p(k′) of the active vertices. We find

N(k′) = − dp

dk′ = c

(
a

1 + δ
+ k′

)−γ

(12)

with c = (γ − 1)( a
1+δ )γ−1. The exponent γ is obtained

from a self-consistency condition obtained from the aver-
age connectivity

m0 = c

∫ ∞

0

k′

( a
1+δ + k′)γ

dk′, (13)

which gives
γ = 2 +

a

m0(1 + δ)
. (14)

Thus the exponent γ depends only on the ratio a/m0(1 +
δ). In Figure 1a, MC data of the l.h.s. of equation (12) as
a function of k′ + a

1+δ is plotted under different values of
a = 2m0(1 + δ) and 0.5m0(1 + δ), and power law decay
behavior is obtained with exponent γ = 4.02 ± 0.05 and
2.48±0.05 respectively, which is expected as equation (14).
For convenience, we rewrite the l.h.s. of equation (12) as
N(k′ + a

1+δ ). Then, if we choose the value of the constant
bias a = m0(1+δ), equation (12) is no other than the prob-
ability distribution of vertices total degree k = (m0 + k′)
of the network. In Figure 1b, we plot the total degree
distribution of the network with m0 = 10 and different
values of δ = 0.0, 0.5, 1.0, 2.0. The total size of the net-
work is N = 106. A power law distribution P (k) ∼ (k)−γ

with best fitted exponent γ = 2.98 ± 0.05 is obtained,
which again is well in agreement with the analytic result
equation (14). For other values of the constant bias a,
the distribution of the overall degree of the networks are
right-skewed.

Notice that each new link added to the network will
induce w0 + δ strength increase to the aim vertex, which
indicates that the vertices with larger in-degree would
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Fig. 1. (a) the log-log representation of the l.h.s. of equa-
tion (12) as a function of k′ + a

1+δ
under different values of

a, the dot line and dash line are guides to the eye with power
law decay exponent 4.0 and 2.5 respectively. (b) illustration
of the probability distribution of vertices total degree of a
weighted structured scale-free network with w0 = 1, m0 = 10,
and a = m0(1+δ), the straight line is a power law k−3. All the
experiment networks have a total number of vertices N = 106.

likewise have larger induced strength. According to our
evolving network rule, the vertices with larger induced
strength have more probability to gain new links, then
the usual degree preferential attachment is reasonably re-
covered. This means that the right-skewed character of
the network, such as the vertices total strength, also of
the links weight, will retain. In order to decrease the sta-
tistical fluctuation, we report the cumulative probability
distribution of the these two properties in Figure 2. The
results are well expected showing good right-skewed char-
acter, which is reasonably in agreement with the condition
of many realistic systems [4,5,10–12].

5 Epidemic spreading

To study the dynamics of infectious diseases spread-
ing in weighted networks, we shall study the standard
susceptible-infected (SI) model [24]. In this model indi-
viduals can only exist in two discrete states: susceptible
(or healthy) and infected. The model can be described in
terms of the densities of susceptible and infected individu-

Fig. 2. Illustration of the probability distribution of cumula-
tive vertices strength (a), and cumulative links weight (b) of a
weighted structured scale-free network with a total number of
vertices N = 106, m0 = 10, w0 = δ = 1.0, and a = m0 (1 + δ).
Both properties display good right-skewed distribution. By
comparison, the case of δ = 0.0 is also plotted in (a), which
recovers the usual degree-dependent deactivation model, and
the strength decays with a power-law form (solid line).

als, s(t) and i(t), respectively, then s(t)+i(t) = 1. Each in-
dividual is represented by a vertex of the network and the
links are the connections between individuals along which
the infection may spread. In weighted networks, according
to reference [26], the spreading rate can be defined as

λij =
(

wij

wmax

)θ

(15)

at which susceptible individual i acquire the infection from
the infected neighbor j, where θ is a positive constant
and wmax is the largest value of wij in the network. In
this model, infected individuals remain always infective,
an approximation that is useful to describe early epidemic
stages in which no control measures are deployed.

We start simulations by selecting one vertex randomly
and assuming it is infected. The disease will spread in
the network in according with the rule of equation (15).
In Figure 3 we plot the density of infected individuals
versus Monte Carlo (MC) time in WSSF networks with
N = 104, δ = w0 = 1.0, m0 = 10 and θ = 0.5, 0.7, 0.8.
Note that wij

wmax
≤ 1, the smaller value of θ means more

quickly the infection spreads.
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Fig. 3. Density of infected individuals versus MC time in
WSSF networks with N = 104, m0 = 10, δ = w0 = 1.0 and
a = m0(1 + δ). The date are averaged over 500 realizations.

For the SI model of epidemic spreading, it is expected
that all the individuals will be infected in the limit of long
time limt→∞ i(t) = 1. We will study the spreading velocity
at the outbreak moment which is defined as

Vinf (t) =
di(t)
dt

≈ i(t) − i(t − 1)
N

. (16)

We account the number of newly infected vertices at each
time step and report the spreading velocity in Figure 4.
The spreading velocity goes up to a peak in a short time
that similar to the spreading process on weighted scale-
free network [26] and unweighted heterogeneous network
case [25], which leave us very short response time to de-
velop control measures. By comparison, in the inset of
Figure 4a, the case of δ = 0.0 (which recovers the original
SSF network proposed in Ref. [20]) is also plotted, and the
velocity fluctuates around some plateau values just as for
a one-dimensional regular lattice, which reflects the one-
dimensional chain structure of the SSF networks. In fact,
according to the rule of spreading, the case of δ = 0.0 cor-
respond to the limit case of θ → 0 for δ �= 0.0. Similarly,
the character of multi-peak in Figure 4a also reflects the
chain like structure of the generated WSSF networks. To
decrease the fluctuation, in Figure 4b, the experiment data
averaging 500 realizations of a network of 104 populations
with approximate values of θ are reported. One can see
in the long time propagation that the power-law decay of
the velocity, which has been studied in reference [26] in the
weighted scale-free network does not arise in our WSSF
networks, in which the velocity decays more likely with an
exponential form after the “peak time”.

6 Conclusions

In this paper, we have studied a simple evolving model for
weighted structured scale-free networks. The growth dy-
namics of the network is governed by a naive weight-driven
deactivation mechanism. The deactivation probability is

Fig. 4. Spreading velocity versus MC time steps in WSSF
network with m0 = 10, δ = w0 = 1.0 and a = m0(1 + δ). The
total size of the network is N = 3 × 105 (a) and N = 104 (b).
By comparison, in the inset of (a), the case of δ = 0.0 is also
plotted and the velocity fluctuates around some plateau values
reflecting the chain like structure of the SSF networks. In the
inset of (b), we report the date on linear-log representation. It is
approximate that the velocity decays exponentially in the large
time limit. The date in (b) are averaged over 500 realizations.

proportional to the inverse of the vertices strength induced
by their in-degree links, which characterize the vertices’
capability of obtaining further links. All interesting prop-
erties of the generated network display good right-skewed
distribution character, which have been found very com-
mon in most realistic systems. And with the simple setting
of the model the degree distribution displays a power law
where the exponent can be obtained analytically. Further-
more, the spreading process of infectious diseases in WSSF
networks has been investigated by the simplest SI model,
showing that the propagation velocity reaches a peak value
very quickly at the initial infection period and then decays
approximately with an exponential form.

The model we have explored, however, is possibly the
simplest one in the class of weight-driven growing net-
works. One can notice that in our model the out-degree of
the vertices remain unchanged in the whole evolving pe-
riod, which is likely unreasonable for realistic conditions.
There exists a series of improvements can be made fur-
ther. For instance, rather than remaining a constant, δ
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is a variable for different vertices depended on their de-
gree or strength; the deactivation mechanism would differ
from equation (6) with a more complex form to mimic in
a detailed fashion particular networked system, etc. All of
these are deserve to make further studies.
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2. R.F.I. Cancho, R.V. Solé, Proc. R. Soc. London, Ser. B
268, 2261 (2001)

3. M. Sigman, G.A. Cecchi, Proc. Natl. Acad. Sci. USA 99,
1742 (2002)

4. M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98, 404
(2001)

5. A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert,
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